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1. General definitions

1.1. General notations

We assume each data set has been normalised using appropriate techniques specific for the type of ‘omics
platform prior to the mixOmics analysis. Let X denote a data matrix of size N observations (rows) × P
predictors (e.g. expression levels of P genes, in columns). The categorical outcome y is expressed as a
dummy indicator matrix Y where each column represents one outcome category and each row indicates
the class membership of each sample. Thus, Y is of size N observations (rows) × K categories outcome
(columns). Table 1 illustrates the transformation from a categorical outcome y into an indicator dummy
matrix Y (right). The transformation is performed internally in mixOmics. We denote for all a ∈ Rn its ℓ1

norm ||a||1 =
∑p

1 |aj | and its ℓ2 norm ||a||2 = (
∑p

1 a
2
j )

1/2. For any matrix we denote by ⊤ its transpose. In
the methods discussed in this article, the data X are internally centered and scaled, as proposed by default
in PLS-based methods (Wold, 1975).

Table 1: Example of an input outcome factor y (left) transformed into an indicator dummy matrix Y (right).
The transformation is performed internally in the supervised multivariate methods.

y
indiv1 trt1
indiv2 trt1
indiv3 trt1
indiv4 trt1
indiv5 trt2
indiv6 trt2
indiv7 trt2
indiv8 trt2
indiv9 trt3
indiv10 trt3
indiv11 trt3
indiv12 trt3

trt1 trt2 trt3
indiv1 1 0 0
indiv2 1 0 0
indiv3 1 0 0
indiv4 1 0 0
indiv5 0 1 0
indiv6 0 1 0
indiv7 0 1 0
indiv8 0 1 0
indiv9 0 0 1
indiv10 0 0 1
indiv11 0 0 1
indiv12 0 0 1

1.2. Cross-validation

Cross-validation (CV) is a model validation technique used in statistical and machine learning to assess
whether the results of an analysis can be generalised to an independent data set. It consists in dividing the
data set into s subsets (or folds), fitting the model on s−1 subsets and evaluating the prediction performance
on the left-out subset. This process is iterated until each subset is left out once; the prediction performance
are then averaged. In our methods, prediction performance refers to either an overall misclassification error
rate or a balanced error rate calculated on the left-out samples.

We define stratified CV when there is approximately the same proportion of each class in each of the
folds. Repeated cross-validation implies that the whole CV process is repeated a number of times nrepeat
to reduce variability across the different subset partitions. In the case of Leave-One-Out CV (validation
= ‘loo’), each sample is left out once (s = N) and therefore nrepeat is set to 1.

For the P - integration with MINT, we use Leave-One-Group-Out CV as described in Section 5.2.

1.3. Prediction distances

As mentioned in the main article, different prediction distances are proposed and implemented in the func-
tions predict, tune and perf to assign to each new observation a final predicted class.

Mathematically, we can define those predicted outputs for a model with H components as follows. Recall
that the outcome matrix Y is a dummy matrix of size N × K. For Nnew new observations and their

3



expression matrix Xnew, we define the predicted dummy variables Ŷnew of size Nnew ×K as:

Ŷnew = Xnew ∗W (D⊤W )−1B

where W,D and B are derived from the X and Y training data sets. W is a P ×H matrix containing the
loading vectors associated toX, D is a P×H matrix containing the regression coefficients ofX on itsH latent
components and B is a H×K matrix containing the regression coefficients of Y on the H latent components
associated toX. Therefore, Ŷnew is the prediction from a multivariable (several columns) multivariate model.

We define the predicted scores or predicted latent variables (components) Tpred of size Nnew ×H as:

Tpred = Xnew ∗W (D⊤W )−1

with the same notations as above. The prediction distances are then applied as follows:

• The maximum distance "max.dist" is applied to the predicted dummy values Ŷnew and is the most
intuitive method to predict the class of a new observation sample. The predicted class is the outcome
category with the largest predicted dummy value. The distance performs well in single data set analysis
with multiclass problems Lê Cao et al. (2011).

For the centroid-based distances ‘Mahalanobis distance’ and ‘Centroids distance’, we first calculate the
centroid Gk of all the learning set samples belonging to the class k ≤ K based on the H latent components
associated to X. Both ‘Mahalanobis distance’ and ‘Centroids distance’ distances are applied on the predicted
scores Tpred. The predicted class of a new observation is

argmin
1≤k≤K

{
dist(Tpred, Gk)

}
, (1)

i.e the class for which the distance between its centroid and the H predicted scores is minimal, for a given
distance defined as:

• The centroid distance "centroids.dist" solves (1) using the Euclidian distance

dist(x,Gk) =
√∑H

h=1 (xh − (Gk)h)
2

• The Mahalanobis distance "mahalanobis.dist" solves (1) using the Mahalanobis distance
dist(x,Gk) =

√
(x−Gk)⊤S−1(x−Gk), where S is the variance-covariance matrix of x−Gk.

In practice we found that the centroid-based distances, and specifically the Mahalanobis distance led to
more accurate predictions than the maximum distance for complex classification problems and N-integration
problems. The centroid distances consider the prediction in a H dimensional space using the predicted
scores, while the maximum distance considers a single point estimate using the predicted dummy variables
on the last dimension of the model. The user can assess the different distances and choose the prediction
distance that achieves the best performance using the tune and perf outputs (see workflows 3.4, 4.3 and 5.4).

We output an example of the predicted dummy variables Ŷnew (Table 2), predicted coordinates Tpred
(Table 3) and associated distance predictions for a PLS-DA analysis on the SRBCT data set (analysed from
the data in worflow 3.4).

2. Graphical outputs to visualise multivariate analysis results

mixOmics (Lê Cao et al., 2017) aims to provide insightful and user-friendly graphical outputs to interpret
statistical and biological results, some of which (correlation circle plots, relevance networks and clustered
image maps) were introduced in González et al. (2012). Via the use of R/S3 functions listed in 2, the function
calls are identical for all multivariate methods implemented in the mixOmics package, as we illustrated in
the Result section. We offer various visualisations, including sample plots and feature plots, which are based
on the component scores and the loading vectors, respectively. Here we list the main important visualisation
functions in mixOmics for which outputs are shown in Figure 1 of the manuscript.
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Table 2: Example of predicted dummy variables Ŷnew corresponding to each class, and predicted class based
on maximum distance on test samples from the SRBCT data. The true class of the test samples is indicated
in the row names.

EWS BL NB RMS max.dist

EWS.T6 0.77 -0.17 0.00 0.39 EWS
EWS.T7 0.89 -0.11 -0.04 0.26 EWS

EWS.T14 0.89 -0.01 -0.11 0.23 EWS
EWS.C11 0.96 -0.10 0.27 -0.13 EWS

NB.C2 0.35 0.01 0.53 0.11 NB
NB.C9 0.11 -0.04 0.92 0.01 NB
NB.C8 0.08 0.04 0.82 0.06 NB

RMS.C9 0.24 -0.08 0.22 0.62 RMS
RMS.C5 -0.15 0.14 0.40 0.60 RMS
RMS.T4 0.24 0.06 -0.06 0.76 RMS
RMS.T5 0.23 0.05 0.03 0.70 RMS
RMS.T3 0.42 0.05 -0.11 0.64 RMS

RMS.T11 0.19 0.10 -0.08 0.79 RMS

Table 3: Example of centroids coordinates for each class from the learning set (left table), predicted scores
and predicted class based on the centroid distances for 3 components (right table) on test samples from the
SRBCT data. The true class of the test samples is indicated in the row names.

dim 1 dim 2 dim 3
EWS -8.79 -11.83 -3.61
BL 26.34 -6.19 12.47
NB 7.83 10.87 -16.36

RMS -8.16 12.61 8.29

dim.1 dim.2 dim.3 centroid.dist mahalanobis.dist

EWS.T6 -17.52 -3.56 0.45 EWS EWS
EWS.T7 -16.13 -7.99 0.13 EWS EWS

EWS.T14 -13.85 -9.91 2.46 EWS EWS
EWS.C11 -6.83 -10.77 -11.74 EWS EWS

NB.C2 3.37 3.41 -11.66 NB NB
NB.C9 11.16 10.46 -21.47 NB NB
NB.C8 11.43 9.83 -17.51 NB NB

RMS.C9 -9.14 8.98 0.71 RMS NB
RMS.C5 4.00 14.58 0.12 RMS RMS
RMS.T4 -10.91 6.34 10.40 RMS RMS
RMS.T5 -9.14 6.88 7.55 RMS RMS
RMS.T3 -12.35 1.82 9.38 RMS RMS

RMS.T11 -9.93 6.83 11.94 RMS RMS

2.1. Sample plots

Sample plots display the component scores, and therefore visualises similarities between samples in a reduced
dimensional space spanned by the first few latent components of the model.

plotIndiv. For the integrative methods (e.g. DIABLO and MINT), samples from separate data set are plotted
on separate figures, allowing to assess the agreement between the data sets at the sample level. Confidence
ellipse plots for each class can be displayed. To visualise the prediction areas of each class, users can overlay
prediction results to sample plots via the background input parameter (see ‘Prediction area visualisation’
Section and Figure 2 in the main article). The method define surfaces around samples that belong to the
same predicted class. These surfaces are then be used to shade the background of the sample plot. More
details are provided in our help file ?background.predict. This functionality is currently only implemented
for supervised analyses of single ‘omics analysis (plsda, splsda) with no more than 2 dimensions.

plotArrow (Arrow representation). The plot overlays the components scores from multiple datasets
and draws arrows between scores associated to the same sample. For most supervised methods and two-
‘omics integration methods listed in Table 1, the start of the arrow represents the component score in the X
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data set and the tip of the arrow is the component score associated to the outcome, or the Y data set. In
particular, for N -integration, the start of the arrow indicates the centroid between all ‘omics data sets for
a given sample and the tips of the arrows the location of the same sample in each data set. In two-‘omics
and N -integration methods, short arrows indicate a strong agreement between the matching data sets, long
arrows a disagreement between the matching data sets (see Figure 3 in main article).

2.2. Variable plots

Variable plots aim to display the correlations between selected variables across data sets, by using the latent
components as a surrogate variable to estimate the correlations (correlation circle plots) or associations
between variables (clustered image maps and relevance networks). The loading vectors plot displays the
importance of each selected variable, and its contribution with respect to a sample group. Some plots
display specified components (plotVar, plotLoadings) while others can also aggregate the similarities
between variables across all components (cim, networks).

plotVar (Correlation circle plots). Correlation circle plots display the correlation between variables
(biological features) and latent components. Each variable coordinate is defined as the Pearson correlation
between the original data and a latent component (see González et al. 2012 for a detailed description).
Correlation circle plots are particularly useful to visualise the contribution of each variable to define each
component (variable close to the large circle of radius 1), as well as the correlation structure between variables
(clusters of variables). The cosine angle between any two points represent the correlation (negative, positive
or null) between two variables.

network (Relevance networks) Relevance networks represent the correlation structure between variables
of different types. The function avoids the intensive computation of Pearson correlation matrices on large
data set by calculating instead a pair-wise similarity matrix directly obtained from the latent components of
the integrative approaches (CCA, PLS, block.pls methods). The similarity value between a pair of variables
is obtained by calculating the sum of the correlations between the original variables and each of the latent
components of the model. The values in the similarity matrix can be seen as a robust approximation of the
Pearson correlation (see González et al. 2012 for a mathematical demonstration and exact formula). The
advantage of relevance networks is their ability to simultaneously represent positive and negative correlations,
which are missed by methods based on Euclidian distances or mutual information. Those networks are
bipartite and thus only a link between two variables of different types can be represented. The network can
be saved in a .glm format using the igraph package, the function write.graph and extracting the output
$gR, see details in our Sweave workflow for DIABLO.

cim (Clustered Image Maps). The plot visualises the distances between two types of variables (two-
‘omics integration), or the distances between variables and samples (single ‘omics supervised and P - inte-
gration). CIM is based on a hierarchical clustering simultaneously operating on the rows and columns of
the selected variables in the original data for the latter, and on the similarity matrix defined in the network
visualisation for the former. By default we use Euclidian distance and complete linkage method but other
distances and methods are proposed. For N -integration, the function cimDiablo represents the selected
features from the different data sets.

plotLoadings (Loading plots). The plot represents the loading weights of each variable (selected) on
each dimension of the multivariate model. Most important variables (according to the absolute value of their
coefficients) are ordered from bottom to top. For supervised analyses, colours indicate the class for which the
mean (or median) expression value is the highest or the lowest for each feature (contrib = ‘max’ or ‘min’).
This graphical output enables to better characterise the molecular signature, especially when interpreted in
conjunction with the sample plot (see Fig. 1).
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Figure 1: Example of sample plot with plotIndiv and loading plot with plotLoadings with sPLS-
DA. The loading plot (right) represents the top 80 genes selected on the second component of the sPLS-DA
model. Colors indicate the tumour subtype where the mean expression levels of the gene is maximal. More
details in the ‘Results’ Section R and sweave code 3.4.

2.3. Additional graphical outputs

Both plotIndiv and plotVar offer usual plot arguments to display symbols, colours and legend, with graphic
styles include ggplot2 (by default), graphics, lattice and 3D plots.

Other graphical outputs are available in mixOmics to visualise the classification performance of the
multivariate models using the generic function plot. The listing of the functions for each framework presented
in our main article are summarised in Fig 2.

Finally, additional graphical outputs or variants for the frameworks DIABLO and MINT are described below
(plotDiablo, circosPlot).

3. Single ‘omics supervised multivariate analysis with PLS-DA and
sPLS-DA

Linear Discriminant Analysis (LDA) and Projection to Latent Structure (PLS, Wold 1966) are popular
multivariate methods for supervised analyses. In mixOmics we mainly focus on PLS methods for their
flexibility to solve a variety of analytical problems (Boulesteix and Strimmer, 2007). PLS regression (Wold,
1966) was originally developed for unsupervised analysis to integrate two data sets with continuous variables,
measured on the same observations or samples. We briefly present the supervised version of PLS, called PLS-
Discriminant Analysis (PLS-DA, Nguyen and Rocke 2002; Barker and Rayens 2003). PLS-DA is natural
extension of PLS that substitutes one of the data set for a dummy indicator matrix Y . PLS-DA fits a
classifier multivariate model that assigns samples into known classes, with the ultimate aim to predict the
classes of external test samples where the outcome might be unknown.

3.1. PLS - Discriminant Analysis

PLS-DA is an iterative method that constructs H successive artificial (latent) components th = Xhah and
uh = Yhbh for h = 1, .., H, where the hth component th (respectively uh) is a linear combination of the X
(Y ) variables. H denotes the dimension of the PLS-DA model. The weight coefficient vector ah (bh) is the
loading vector that indicates the importance of each variable to define the component. For each dimension
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functions PLS-DA sPLS-DA DIABLO sparse	DIABLO MINT sparse	MINT

function	
call plsda splsda block.plsda block.splsda mint.plsda mint.splsda

parameters ncomp ncomp
keepX

design
ncomp

design
ncomp
keepX

ncomp ncomp
keepX

performance

tune, 
plot.tune

✓ ✓ ✓

perf, 
plot.perf

✓ ✓ ✓ ✓ ✓ ✓

auroc ✓ ✓ ✓ ✓ ✓ ✓

sample plot

plotIndiv ✓ ✓ ✓ ✓ ✓ ✓

plotArrow ✓ ✓ ✓ ✓ ✓ ✓

plotDiablo ✓ ✓

variable	plot

plotVar ✓ ✓ ✓ ✓ ✓ ✓

plotLoadings ✓ ✓ ✓ ✓ ✓ ✓

circosPlot ✓ ✓

cim ✓ ✓ ✓ ✓ ✓ ✓

network ✓ ✓ ✓ ✓ ✓ ✓

variable	list selectVar ✓ ✓ ✓ ✓ ✓ ✓

Figure 2: Summary of the main mixOmics S3 functions for supervised multivariate analyses.

h = 1, . . . , H, PLS-DA seeks to maximize

max
(ah,bh)

cov(Xhah, Yhbh), s.t. ||ah||2 = ||bh||2 = 1 (2)

where Xh, Yh are the residual (deflated) matrices extracted from each iterative linear regression (see Lê Cao
et al. 2011 for more details). The PLS-DA model assigns to each sample i a pair of H scores (tih, u

i
h)

which effectively represents the projection of that sample into the X- or Y - space spanned by those PLS
components. As H << P , the projection space is small, allowing for dimension reduction as well as insightful
sample plot representation. Note that the projection into the Y -space is not used for Discriminant Analysis
with PLS-DA.

3.2. Variable selection with sparse PLS-DA

We developed a sparse version of PLS-DA (Lê Cao et al., 2011) which includes an ℓ1 penalisation (Tibshirani,
1996) on the loading vector ah to shrink some coefficients to zero. Thus, for each dimension h = 1, .., H,
sPLS-DA solves:

max
(ah,bh)

cov(Xhah, Yhbh), s.t. ||ah||2 = ||bh||2 = 1 and ||ah||1 ≤ λh (3)

where λh is a non negative parameter that controls the amount of shrinkage in ah. The component scores
th = Xhah are now defined on a small subset of variables with non-zero coefficients, leading to variable
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components
t1 =	X1 a1
t2 =	X2 a2
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coded	as

Figure 3: Example of data matrix decomposition for single ‘omics analysis with PLS-DA. The
predictor matrix X is decomposed into a set of components (t1, . . . , tH) and associated loading vectors
(a1, . . . , aH), Y is the outcome coded as a dummy indicator matrix as described in Table 1 and combined
linearly (see exact formula in Equation (2)). Xh is the deflated (residual) matrix starting with X1 = X,
for h = 1 . . . H. H is the dimension of the model - or the number of components.

selection that aims to optimally maximise the discrimination between the K outcome classes in Y . In
mixOmics we use soft-thresholding to improve usability by replacing the λh parameter by the number keepX
of features to select on each dimension (see ‘Choice of parameters’ Section in the main article).

3.3. Extensions of PLS-DA for repeated measurements and 16S microbiome data

PLS-DA and sPLS-DA were extended to account for repeated measurement designs, as described in Liquet
et al. (2012) by specifying the argument multilevel in the plsda and splsda functions.

Recent extensions in the package also include sPLS-DA analysis to identify microbial communities for 16S
data with an additional logratio argument to account for compositional data in microbiome experiment
(Lê Cao et al. 2016, see also our mixMC framework in www.mixOmics.org/mixMC).

3.4. Workflow for PLS-DA analysis

We provide a full R and Sweave workflow electronically on our website tutorial page or at this link for all
frameworks.

4. N-integration across multiple ‘omics data sets with DIABLO

The integration of multiple ‘omics datasets measured on the same N biological samples (Figure 1 in main
article) is based on a variant of the multivariate methodology Generalised Canonical Correlation Analysis
(GCCA, Tenenhaus and Tenenhaus 2011; Tenenhaus et al. 2014), which, contrary to what its name suggests,
generalises PLS for N -integration. Multiple data integration is a challenging task, as the analysis can be
strongly affected by artefacts of the ‘omics technological platforms or by variation between manufacturers,
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despite being measured on the same biological samples. Our recent development DIABLO further improved
the implementation of GCCA to include variable selection in a supervised framework and in a user-friendly
manner (Günther et al., 2014; Singh et al., 2016). We have applied DIABLO to integrate different ‘omics
experiments arising from different ‘omics platforms (e.g. transcriptomics, proteomics in Günther et al. 2014,
as well as mRNA, proteomics, miRNA and methylation data in Singh et al. 2016), to identify correlated or
co-expressed ‘omics variables that also explain the outcome of interest.

4.1. DIABLO method

We denote Q ‘omics data sets X(1)(N×P1), X
(2)(N×P2), ..., X

(Q)(N×PQ) measuring the expression levels
of Pq ‘omics variables on the same N biological samples, q = 1, . . . , Q. GCCA solves for each component
h = 1, . . . , H:

max
a
(1)
h ,...,a

(Q)
h

Q∑
q,j=1,q ̸=j

cq,j cov(X
(q)
h a

(q)
h , X

(j)
h a

(j)
h ), s.t. ||a(q)h ||2 = 1 and ||a(q)h ||1 ≤ λ(q) (4)

where λ(q) is the penalisation parameter, a
(q)
h is the loading vector on component h associated to the residual

(deflated) matrix X
(q)
h of the data set X(q), and C = {cq,j}q,j is the design matrix. C is a Q×Q matrix that

specifies whether datasets should be correlated and includes values between zero (datasets are not connected)
and one (datasets are fully connected). Thus, it is possible to constraint the model to only take into account
specific pairwise covariances by setting the design matrix (see Tenenhaus et al. 2014 for more details). Such
design thus enables to model a particular association between pairs of ‘omics data, as expected from prior
biological knowledge or experimental design. DIABLO Discriminant Analysis in mixOmics extends (4) to a
supervised framework by replacing one data matrix X(q) with the outcome dummy matrix Y .

Choice of the design matrix There are different strategies to specify the design matrix. One can define
the design matrix based on prior biological knowledge (e.g. proteomics and transcriptomics ‘should be’ highly
correlated), or based on a data-driven approach. A preliminary multivariate method integrating two data
sets at a time (e.g. pls) can assess the common information between data sets in an unsupervised analysis,
while the performance evaluation of different designs can guide the choice when seeking for a predictive
multi-‘omics model. Our experience has shown that a trade-off between maximising correlation between
datasets and maximising the discrimination of the outcome was required. Assume that X(Q) is set to the
outcome dummy indicator matrix. A full design, where cq,j = 1 for all q ̸= j, maximises the correlation
between datasets while a null design, where cq,j = 0 for q, j < Q and cq,j = 1 for q, j = Q, maximises the
separation between the outcome classes. In practice, we found that a full weighted design where cq,j = 0.1
between data matrices and 1 for the outcome led to such trade-off (a correlated and discriminant molecular
signature), see Figure 4.

4.2. Specific outputs to visualise multiple ‘omics data sets integration

Several types of graphical outputs are available to support interpretation of the statistical results. To
represent samples, plotIndiv displays component scores from each ‘omics data set individually. Such type
of plot enable to visualise the agreement between all data sets at the sample level. The plotArrow function
also enables similar visualisation (see Section 2). The function plotDiablo is a matrix scatterplot of the
components from each data set for a given dimension; it enables to check whether the pairwise correlation
between two ‘omics has been modelled according to the design.

The function circosPlot shows pairwise correlations among the selected variables across all data sets.
Variables are represented on the side of the circos plot, where colours indicate the type of data, and external
(optional) lines display the expression levels with respect to each outcome category. circosPlot implement
an extension of the method used in plotVar, cim and network described in González et al. (2012).
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mRNA

miRNA

protein

Full design Null design

Y
1
1
2
3
1

mRNA protein miRNA Y

mRNA 0 1 1 1

protein 1 0 1 1

miRNA 1 1 0 1

Y 1 1 1 0

mRNA

miRNA

protein

Y
1
1
2
3
1

mRNA protein miRNA Y

mRNA 0 0 0 1

protein 0 0 0 1

miRNA 0 0 0 1

Y 1 1 1 0

Design matrix: Design matrix:

mRNA

miRNA

protein

Full weighted design

Y
1
1
2
3
1

mRNA protein miRNA Y

mRNA 0 0.1 0.1 1

protein 0.1 0 0.1 1

miRNA 0.1 0.1 0 1

Y 1 1 1 0

Design matrix:

Figure 4: Example of different design matrices in DIABLO for the multi-‘omics breast cancer
study (illustrated in the main article). Links or cells in grey are added by default in the DIABLO function
block.plsda and block.splsda and do not need to be specified by the user.

4.3. Workflow for DIABLO analysis

We provide a full R and Sweave workflow electronically on our website tutorial page or at this link for all
frameworks.

5. P -integration across independent data sets with MINT

The integration of independent data sets measured on the same common P features under similar conditions
or treatments (Figure 1 in main article) is a useful approach to increase sample size and gain statistical
power. In this context, the challenge is to accommodate for systematic differences that arise due to differences
between protocols, geographical sites or the use of different technological platforms to generate the same type
of ‘omics data (e.g. transcriptomics). The systematic unwanted variation, also called ‘batch-effect’, often
acts as a strong confounder in the statistical analysis and may lead to spurious results and conclusions if it is
not accounted for in the statistical model. Here we briefly introduce MINT, a PLS-based supervised method
that integrates independent studies in a classification framework.

5.1. MINT method

MINT (Rohart et al., 2017) is an extension of the multi-group PLS framework (mgPLS, Eslami et al. 2013,
2014), where ‘groups’ represent independent studies, to a supervised framework with variable selection.
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MINT seeks for a common projection space across all studies, defined on a small subset of discriminative
variables that consistently discriminate the outcome classes across studies.

In MINT, we combineM datasets denotedX(1)(N1×P ), X(2)(N2×P ), ..., X(M)(NM×P ) measured on the

same P predictors but from independent studies, with N =
∑M

m=1 Nm. Each data set X(m), m = 1, . . . ,M ,
has an associated dummy indicator outcome Y (m) in which all K classes are represented. We denote X
(N × P ) and Y (N ×K) the concatenation of all X(m) and Y (m) respectively. In our MINT framework, each
variable from the datasets X(m) and Y (m) is centered and scaled within each study m. For each component
h, MINT solves :

max
ah,bh

M∑
m=1

Nm cov(X
(m)
h ah, Y

(m)
h bh), s.t. ||ah||2 = 1 and ||ah||1 ≤ λ (5)

where ah and bh are the global loadings vectors common to all studies, t
(m)
h = X

(m)
h ah and u

(m)
h = Y

(m)
h bh

are the partial PLS-components that are study specific. Residual (deflated) matrices are calculated for each
iteration of the algorithm based on the global components and loading vectors (see Rohart et al. 2017). Thus
the MINT algorithm models the study structure during the integration process. The penalisation parameter
λ controls the amount of shrinkage and thus the number of non zero weights in the global loading vector a.
Similarly to sPLS-DA (Section 3.2) MINT selects a combination of features on each PLS-component.

5.2. Leave-One-Group-Out Cross-Validation for performance assessment

In MINT we take advantage of the independence between studies to evaluate the performance based on a novel
CV technique called ‘Leave-One-Group-Out Cross-Validation’ (Rohart et al., 2017). LOGOCV performs CV
where each study m is left out once. The aim is to reflect a realistic prediction of independent external
studies. Note that LOGOCV cannot be repeated (no nrepeat argument) as the partitioning is not random.

5.3. Specific graphical outputs for MINT

The set of partial components t
(m)
h , h = 1, ..., H provides outputs specific to each study m in plotIndiv.

The samples plots enable to perform a quality control step to identify studies that cluster outcome classes
differently to other studies (i.e. ‘outlier’ studies). The function plotLoadings displays the coefficients
weights of the features globally selected by the model but represented individually in each study to visualise
potential discrepancies between studies. Visualisation of the global loading vectors is also possible (argument
study = ‘all.partial’ or ‘global’). Note the projection into the Y -space is not useful in MINT.

5.4. Workflow for MINT analysis

We provide a full R and Sweave workflow electronically on our website tutorial page or at this link for all
frameworks.

6. Computational time for large data sets

We report some examples of computational time for very large data sets we recently analysed with mixOmics.
Note that for most analyses, we would recommend filtering the data sets, as detailed in Section ‘Data input’
in the main article for more tractable tuning of the ncomp and keepX parameters.
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Table 4: Example of runtime for very large data sets analysed in mixOmics. Tuning and performance
assessments were performed with 5-fold CV for single ‘omics and N-integration, or LOGOCV for P-integration
(Rohart et al. 2017, Singh et al. 2016, cluster with 10 cpus and 50 Gb RAM).

Framework
Single ’omics N -integration P -integration
sPLS-DA DIABLO MINT

Data HNSCC Asthma (2 omics) Stem Cell (8 studies)
N 60 194 210
P 82, 132 30, 000; 30, 000 13, 313
function tune perf tune perf tune perf

#fold CV (repeated) 5(10) 5(10) 5(1) 5(10) LOGOCV LOGOCV

ncomp 5 3 2 2 2 2
grid length per component 40 - 222 - 100 -
#cpu 10 10 10 10 1 1
runtime 15min 6min 19min 3min 17min 12sec
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